
ENTERING THE MACHINE AND LEAVING IT AGAIN: POETICS
OF SOFTWARE IN CONTEMPORARY ART

FLORIAN CRAMER

ABRAHAM MOLES AND THE SITUATIONIST INTERNATIONAL

The history of algorithmic programming in art is much older than that
of electronics: It includes, for example, word permutation poetry like
that of the 3rd century Latin poet Optatianus Porfyrius and automatic
composition formulas like Athanasius Kircher musical automata of
the 17th century (both created in Italy). However, today I would like
to speak about the poetics of software in recent and contemporary
digital art. It is, of course, inseparable tied to modern computing.

In 1962, physicist and philosopher Abraham M. Moles wrote a semi-
nal programmatic and theoretical outline of computational art, the
first manifesto of permutational art (erstes manifest der permuta-
tionellen kunst) [slide]. The booklet combines structuralist and cy-
bernetic theory with examples of mathematics, contemporary exper-
imental poetry, music, visual art, and even mysticism and erotic art.
Moles’ demanded to refound both the poetics and the aesthetics of art
on the grounds of computation: As composition, the new art would
“narrow down and exhaust the field of possibilities accessible through
a set of rules.”

Moles even speaks of the new art as a “fundamentally anti-semantic
activity.” In his conclusion, he writes that artists would turn into
“programmers” and, quote, “from now on, artworks will be realized
either by machines or through their own consumers”.

With this statement, Moles pretty much set the agenda of the new
computer arts, and today, after almost half a century, it still phrases
a virulent point. To my knowledge, his “manifesto of permutational
art” is the earliest and most concise program of what later would be
called generative art.

However, Moles’ implication that computer-generated art would be
only formal and eliminate all cultural semantics, was controversial.

Date: Feb. 7th, 2006.
1



englishENTERING THE MACHINE AND LEAVING IT AGAIN: POETICS OF SOFTWARE IN CONTEMPORARY ART2

Already in 1963, one year after the manifesto had appeared, it made
him subject of a fierce polemical attack by an other group of contem-
porary artists and theorists, the Situationist International. On the sur-
face, the programs of both Moles and the Situationists shared many
common points. Drawing both from the sociology of Henri Lefebvre,
they conceived of industrial automation as the root of a society of sur-
plus and leisure. In the early 1960s, painter Guiseppe Pinot-Gallizio
had even promoted a machine-generated “industrial painting” within
the Situationist International. However, the Situationists were not
fighting against semantics, but – in their indebtedness to romanticist
and surrealist programs – on the contrary advocating a revolution-
ary imagination. On these grounds, Guy Debord attacked Moles as a
“petite tête” (“small head”) technocrat and told him “tu es un robot”.

I would like to argue that this schism between a rigidly formalist and
a rigidly “imaginist” (to use a word by Situationist Asger Jorn) poetics
obstructed computer arts for almost three decades until the advent of
the personal computer and the Internet.

SYNTHETIC COMPUTER ART

Before the personal computer and the Internet, computer art was
thinkable only as synthetic creation, i.e. the construction of algo-
rithms in clean-room laboratories. Of course, this was the inevitable
condition of computer-based generative art and computer science in
general in the 1960s and 1970s when almost all software had to be
written from scratch. But it is also true from computational art that
did not actually work with electronic computers, and probably not
even think of itself as computational art at all.

Proto- and Para-Computer Art. In 1960, the composer La Monte
Young who’s know today mainly as a pioneer of minimal music wrote
a piece that consisted solely of the following instruction [slide]:

“Draw a straight line and follow it.”

First of all, it’s a performance score. But its instruction is unambigu-
ous and formal enough to be also executed by a machine and adapted
as a computer program. It is, in other words, an algorithm and a
source code. However, it is an impossible algorithm at the same time.
If either the performer or the machine would radically carry out the
instruction, this seemingly simple piece mutates in the most monstru-
ous art work of all time. One cannot consequently draw a straight



englishENTERING THE MACHINE AND LEAVING IT AGAIN: POETICS OF SOFTWARE IN CONTEMPORARY ART3

line and follow it without going beyond physical limits and writing
a circular inscription into the whole earth. So the piece implies a
philosophical defiance of space and time constraints, and leaves the
piece in a non-resolvable gap between its physical execution and its
mental, conceptual imagination. Doing so, this score is not only the
founding document of minimal music, but it also creates a paradoxi-
cal union of minimalism and late romanticist Wagnerian total artwork
(Gesamtkunstwerk), by the virtue of a source code that condenses an
abundance into one line of instruction. The piece reverses subject
and object: ultimately, the performers turns into its object, and the
line becomes its subject.

In other words, the conflict articulated in the controversy between
Moles and the Situationist exists within the piece. It is not resolved,
but sustained as a paradox.

Software as Metaphor of Dematerialization. In the immediate con-
text of American Fluxus and conceptual art, the notion of “soft-
ware” got introduced in the early 1970s, however in a semantics that
was strangely detached from both Moles’ theoretical and La Monte
Young’s practical anticipation of software art. In 1973, Lucy Lippard
published her famous book Six years with the subtitle “The Dema-
terialization of the Art Object from 1966 to 1972”. The keyword
“dematerialization” also sums up how the term “software” had been
introduced and understood in contemporary art since 1970. “Soft-
ware” had been the title of an art show curated by critic Jack Burn-
ham in New York in 1970. It mostly consisted of concept art works,
partly juxtaposed with experimental computer software development
projects such as Ted Nelson’s first prototype of a hypertext system.
However, the emphasis of the exhibition was not algorithms in art,
but immaterial “software” as opposed to material hardware. As Ed-
ward A. Shanken puts it in an essay on Burnham’s exhibition, the
exhibition used the term software as a “metaphorical premise” for
the dematerialization of art, not as a reflection of computation.

In the same year, Sidney Youngblood published his book “Expanded
Cinema”, a reference work on the extension of experimental film into
cinematic performances and installations, including video, “cyber-
netic cinema” and “computer films”. Elsewhere, Youngblood uses the
same broad metaphorical notion of software as immaterialization as
Burnham when he writes:



englishENTERING THE MACHINE AND LEAVING IT AGAIN: POETICS OF SOFTWARE IN CONTEMPORARY ART4

“Just as every fact is also metaphysical, every piece of hardware im-
plies software: information about its existence. Television is the soft-
ware of the earth. Television is invisible. It’s not an object.” [slide]

Perhaps this phrase was the inspiration for Radical Software, an un-
derground magazine for video artists and activists that first appeared
in the same year, 1970. Despite its name, and under the same
metaphorical premise as Burnharm’s exhibition and Youngblood’s
paragraph, it was not concerned with computing at all, but propa-
gated an “Alternate Television Movement.” The issues combined aes-
thetic reflection with political debates about free media and publicly
accessible radio spectrum, much like the contemporary free wireless
network movement. Otherwise, the journal conceived of “software”
purely as dematerialized art, and did not cover computer program-
ming.

Software-aided art. Abraham Moles’ idea that artists should become
programmers therefore remained restricted to the specialized field,
the ghetto, of electronic art or “media art” as it is still exists to-
day – although I think it’s outmoded as a category and likely to be
given up soon. There is, first of all no computer art without soft-
ware, unless the hardware is being used as purely non-computational
sculptural objects – as bricks. In that respect, all computer art could
be called software art. However, in only rare cases, it is an artistic
play with the software as a medium, but something that should cor-
rectly be called software-aided art. In most computer-generative art,
both the software and the hardware acted as mere catalysts. They
functioned as black boxes. Neither the hardware, nor the code or
its processing was considered the artwork, but only the output: i.e.
a computer-generated image, animation, installation or audiovisual
piece. Often, this is linked to the concept of an autonomous machine
creation, in other words the idea that an artwork is no longer a hu-
man product, but a creation by the computer. If we take the original
Greek term poiesis, which literally means “making”, we could say that
in such artworks, poiesis turns into poetics, the making of making.
But when making turns into meta-making, human subjectivity is not
abandoned. Instead, it just shifts to a second order position, express-
ing itself in the design of the formula rather than the design of the
product. When critics and viewers, fixated on the material product,
conclude that technology has done away with human agency behind
a work, this is a cognitive fallacy reminiscent of Plato’s cave. It is yet
another fallacy to believe that conversely on the aesthetic side, i.e.



englishENTERING THE MACHINE AND LEAVING IT AGAIN: POETICS OF SOFTWARE IN CONTEMPORARY ART5

that of perception of the work, viewers would be liberated through
the mechanical variations of the work permitted by the formula.

Jeffrey Shaw, The Legible City. To illustrate my point, I would like to
fast-forward to the years 1989-1991 and Jeffrey Shaw’s computer in-
stallation The Legible City at the ZKM media arts center in Karlsruhe,
Germany [slide]. It is a contemporary classic in the genre of inter-
active installation art and consists of a video-projected 3D simulation
coupled with a stationary bicycle. The projection shows abstract cubic
3D representations of cities of New York, Amsterdam and Karlsruhe.
The spectator, or player, of the work sits on the bicycle and cycles,
in a “virtual reality” simulation, through the cities. The cityscapes
are made up of letters and words written by Shaw’s artistic collab-
orator Dirk Groeneveld. The work was realized on Silicon Graphics
workstations, and completed two years before the computer game
Doom came out and established immersive first-person 3D navigation
games on commodity PCs.

The Legible City could be called an alternative interface to reading
texts on a computer. The conventional flat two-dimensional emula-
tion of print and text pages on the screen is being replaced with an
immersive three-dimensional text-scape. The navigation seems to be
intuitive thanks to (a) the simulation of anthropomorphic, euclidian
space and (b) the emulation of the bicycle as a familiar technology
of moving through spaces. So the piece is a perfect example of a
concept of digital art as “interactive” simulation and “virtual reality”,
through anthropomorphist interfaces created with complex, high tech
hardware and software, realized, because of that complexity, as an in-
stallation in a dedicated high tech art space.

I see Shaw’s “Legible city” as hardly anything more than a technol-
ogy gimmick and a glorified interface design study. Its subject of the
city inscribed with texts reminds of Tommaso Campanella’s “Città del
sole”, the utopian city whose walls are covered with educational expla-
nations of all knowledge and sciences. Just as Campanella’s utopia is
naive and even problematic, so is Shaw’s if it was intended as such.
The Legible City is not, as was written, liberating the letter like concrete
poetry. While concrete poetry and Marinetti’s “parole in libertà” were
about freeing type and language from their conventional typographic
and grammatical constraints and freeing them, as much as possible,
from anthropomorphisms and spatial dimensions, Shaw’s system puts
them just under a different restraint – the anthropomorphic Euclidian
space of the city. It does not take apart writing and reinvents it from



englishENTERING THE MACHINE AND LEAVING IT AGAIN: POETICS OF SOFTWARE IN CONTEMPORARY ART6

scratch, but puts letters into a pseudo-interactive human kitsch world.
One could compare this to the treatment of letters in 19th century
children’s books or alphabetic toys, only that the latter are interactive
in a much more comprehensive sense than the Legible City. First of
all, Shaw’s installation suffers from the fact that it does not think of
itself a toy, but takes itself overly serious as an “interactive” and ex-
perimental art work. On his web page for the project, Jeffrey Shaw’s
writes:

Travelling through these cities of words is consequently
a journey of reading; choosing the path one takes is a
choice of texts as well as their spontaneous juxtaposi-
tions and conjunctions of meaning.

The text misses to reflect that these allegedly “spontaneous juxtapo-
sitions and conjunctions” are not spontaneous at all. They only exist
within the set of possible combinations encoded into the software
that controls the installation. There is no possibility, for example,
that a word appears on the screen that has been inscribed into the
software before, and no conjunction can be made (a) outside the pre-
determined possibilities in the program and (b) outside the Euclidian
space constraints of the visual simulation. It is, in other words, an
illusion of interactivity, spontaneity and intuitivity which the piece
sells. Nothing of this could be criticized if the work would actually
reflect and critically engage with this illusion. But this lack of reflec-
tion, and cognitive fallacy of “interaction” and “spontaneity”, is not
only characteristic of Shaw’s work, but the whole field of generative
and so-called interactive art. It is struck with dangerously simpli-
fied notion of interactivity – a reductive understanding of interaction
as pointing, clicking and other Pavlovian stimulus-response-reactions
within the constraints of a programmed box.

ANALYTIC COMPUTER ART

Net.art. In the mid-1990s, net.art embodied a paradigm shift in so-
called media art whose nature was institutional, poetic and aesthetic
at the same time. In institutional terms, it was the first computer art
outside research labs and highly funded institutional environments.
In poetic terms, it was low tech computer art. In aesthetic terms, it
borrowed from the older low tech artisanship of hacker cultures by
adopting its aesthetics of disruption and digital humorism: network
collaboration and subversion, ASCII art, code poetry, viruses, com-
puter game modification. While all computer art before had used



englishENTERING THE MACHINE AND LEAVING IT AGAIN: POETICS OF SOFTWARE IN CONTEMPORARY ART7

a synthetical approach, creating its works from scratch, net.art used
an analytical approach of taking digital information and code as ma-
terial. It was computer art under the new conditions of cheap per-
sonal computing. Unlike in earlier computer arts, artists could use
ready-made digital information and code “out there” and treat it like
Dadaist and Pop art painters treated found objects in their collage
work.

One could call it an informal, playful and performative approach to
digital art. With the example of the work of jodi and other net.artist, I
would like to show how this art developed from experimentation with
network information to experimentation with software, and from ex-
perimentation with software to performances and interventions.

jodi. I would like to start with OSS, an early work from http:
//www.jodi.org [slide oss.jodi.org]. Jodi stands for Joan Heemskerk
and Dirk Paesmans, a Dutch-Belgian artist couple. Their early work
OSS [slide] makes small browser windows pop up and fly around
that evade manual control. If one opens the site, it performs a hostile
takeover of one’s web browser. It is a hack, a punk-like aesthetic and
technological hijacking. It involves no simulation, no anthropomor-
phism, no virtual reality, but is the technology itself read against the
grain. It does not simulate an anthropomorphic space in order to be
perceived and experienced, but simply uses everyday experience with
personal computer operating systems and the Internet as its frame of
reference. It is not a high tech installation in a white cube, but low
tech running on any home or office computer. The whole source code
of the pages takes up less than 10 Kilobyte, i.e. has the average size
of a short E-Mail, as opposed to a complex software application with
several 100,000 lines of original source code. It uses ready-made,
industrial software – a web browser in this case –, however not in
an affirmative way, but in an attempt to hack it and subvert its cul-
tural interface paradigms. It is ironical and melancholic to the degree
that it promises no computing utopias, and is not futurist human-
machine-interface research, but ultimately depicts “interactivity” in-
side the computer as a scam and sad hoax on the users. By forcing
the user to hack the computer in order to regain control – by killing
the browser, shutting down the machine or perhaps even throw it out
of the window – it however creates a genuine interactivity outside the
box and outside preempted behavioral patterns in the software.

http://www.jodi.org
http://www.jodi.org


englishENTERING THE MACHINE AND LEAVING IT AGAIN: POETICS OF SOFTWARE IN CONTEMPORARY ART8

This play involves simulations, too, but unlike the “Legible City” it is
not simulation of anthropomorphic space, but simulation of machine
functions.

web stalker. Analogous to jodi, net.artist Olia Lialina stated that many
of her early works were based on bugs in the Netscape browser and
therefore no longer work on contemporary computer setups. These
plays with the web browser were not only a critical engagement with
the Web and its aesthetics, but also an engagement with the soft-
ware that shaped its access modes and interfaces. It was therefore
a logical step from subverting standard browsers to developing al-
ternative browsers. Most famous is the I/O/D, web.stalker [slide
http://www.backspace.org/iod/iod4.html]. It turns web browsing
upside down by not showing the smooth typographic rendering, but
the otherwise concealed technical layers of the web, including HTML
source code and http protocol communication, in separate windows
and controls. It takes apart the separate components of web browsing
– “takes apart” in the literal meaning of analysis. It thus achieves two
things at once: It frees the cultural technique and the cultural imag-
ination of web browsing from its conventional interface metaphors,
including that of “browsing” itself. Secondly, it maps the World Wide
Web as a controlled space, controlled by codes. This duality of freeing
the user’s imagination and revealing control structures paradigmati-
cally expresses itself in I/O/D’s slogan, “software is mind control, get
some”.

Software art. Within net.art itself, there was an increasing shift to-
wards work with software, and as a result, software manipulated
or written by artists. Critical observers described these works as
“Artware” (Saul Albert in 1999), “experimental software” (Tilman
Baumgärtel), “speculative software” (Matthew Fuller), “artistic soft-
ware” (Andreas Broeckmann) and “software art” (Alexander Gal-
loway, 1999). It was reflection on the fact that digital artists had first
taken software as a transparent tool, and later began to reflect which
influence that tool had on their own work and aesthetics. The more
intensely artists worked with the computer, the more problematic the
alleged tool became – not because of some “objective” limitation, but
because of the culture, philosophy and subjectivity imposed by the
creators of onto the users of the software.

Signwave Auto-Illustrator.

http://www.backspace.org/iod/iod4.html


englishENTERING THE MACHINE AND LEAVING IT AGAIN: POETICS OF SOFTWARE IN CONTEMPORARY ART9

Codework. Subjectivity expressed in code is also characteristic of the
whole genre of artistic codeworks whose chief medium are E-Mail
messages written hybrids of English and code fragments from pro-
gramming languages, character encodings, markup languages, emoti-
cons and network protocols. Jodi were pioneers of this genre of digi-
tal art, along with Ted Warnell, Alan Sondheim, Netochka Nezvanova
and the Australian female net artist mez (Mary Anne Breeze). One of
Alan Sondheim’s codeworks reads as follows:

From: Alan Sondheim <sondheim@panix.com>
To: _arc.hive_@lm.va.com.au
Date: Thu, 9 Jan 2003 17:17:20 -0500 (EST)

sleeping and running zombies through bodies

CPU states: 4.7% user, 5.8% system, 0.0% nice, 89.4% idle:36 processes:
35 sleeping, 1 running, 0 zombie, 0 stopped:1m 4:20pm up 8 min, 1 user,
load average: 0.54, 0.26, 0.11: :Mem: 38664K av, 35084K used, 3580K
free,

[\ldots]

The work is based on the output of the Unix system command “top”
which displays a list of running processes, memory and central pro-
cessor load. “Zombie” is a technical Unix term for a program process
that can no longer be terminated with the “kill” command. Sond-
heim’s text takes these descriptors—or “semantics,” as computer sci-
ence would call it—literally. He reads the output of the program as
a physical inscription of bodies, as performance art and a subjective
utterance in the medium of computer software. Yet it is not simply a
poetic metaphorization because the technical apparatus of writing be-
comes a part of the text. There is a feedback of textual input, output
and processing inside the text and within the medium of code. Sub-
ject and object, syntax and semantics, formalism and culture become
inseparably entangled, crisscrossing and writing over each other. As
such, the “codeworks” by kodi, mez, Alan Sondheim and other artists
manifest a most radical understanding of formalisms as meaningful.
They appropriate languages that were designed to be asemantic—
programming languages, protocol code, shell commands—to unveil
and elaborate their metaphorical and physical inscriptions, implica-
tions, and engendered meaning lurking between the lines. At this
point, that is equally present in the works of I/O/D, for example,
computational art has turned into a flat-out antithesis and refutation
of Abraham Moles’ claim that cybernetic art would be “fundamentally
anti-semantic”.



englishENTERING THE MACHINE AND LEAVING IT AGAIN: POETICS OF SOFTWARE IN CONTEMPORARY ART10

This also means, by implication, that there is no difference between
“code” (or artificial language) on the one hand and “interface” on the
other, because the code already is an interface, and the interface is a
code.

Bifo.

jaromil, forkbomb. This energy is also embbedded into the twelve
characters of jaromil’s forkbomb [slide]:

:({ :|:& };:

Most computer operating systems can be crashed or at least brought
to a grinding halt when users, even those without superuser priv-
ileges, launch an abundant ever-growing amount of programs that
eat up all memory and CPU time. The easiest way to achieve this is
a “forkbomb”, a little program which does nothing but launch two or
more copies of itself upon startup. Since these copies do the same
in turn, this sets off a chain reaction with an exponentially growing
number of processes. Forkbombs have been popular entertainment
among hackers since about the mid-1990s, but jaromil manages to
condense them to a most terse, poetic syntax, arguably the most ele-
gant forkbomb ever written.

Unwillingly, this example also reveals a problematic issue of the term
“software art”: That it is often misunderstood as high programm
craftsmanship. In fact, this understanding has its roots in computer
science itself. Donald Knuth’s textbooks “The Art of Computer Pro-
gramming” or Paul Graham’s recent book “Hackers and Painters” are
founded on a post-classicist notion of art as beauty and high crafts-
manship, for example in the elegance of an algorithm.

Negativeland, Squant. A counter-example to this – software art that
expends programming skills – is a rather unknown work of the Amer-
ican experimental music group Negativeland, the “Squant” browser
plugin http://www.negativland.com/squant/plugin.html. Nega-
tiveland claim that

Squant is a color that cannot be seen on traditional
RGB monitors. This plug-in changes the spectral display
capabilities of your system software. THE NEWHEW
SQUANTVIEW PLUG-IN utilizes a new color model
(“RGBS”) to facilitate the visualization of the Squant

http://www.negativland.com/squant/plugin.html


englishENTERING THE MACHINE AND LEAVING IT AGAIN: POETICS OF SOFTWARE IN CONTEMPORARY ART11

color spectrum, in addition to the already-established
RGB color model.

Negativeland’s website offers downloadable software packages for
Windows and Mac OS and a ”Tech Support“ forum. It is filled with
actual help inquiries by people who tried to get the plugin running,
failed at one step, were helped, and still failed. Of course, the plu-
gin and the ”Squant“ color is a hoax and doesn’t work at all. Yet it
is a clever artistic reflection of software as culture that includes va-
porware just as much as actually running code. The false promises,
installation nightmares, support horrors and other frustrations with
software, known to any PC user, become the material of the work and
get turned into an social-artistic performance.

ubermorgen.com/Alessandro Ludovico: Google will eat itself. This ten-
dency is even more pronounced in recent artistic work – work that
has its origins in the realm of net.art and software art, but is devel-
oping into interventionist performance art both in the Internet and
outside.

A very recent example is “Google will eat itself” http://www.gwei.
org [slide] by ubermorgen.com and Alessandro Ludovico. ubermor-
gen.com consists of former etoy member Hans Bernhard and Liz
Haas, Alessandro Ludovico is well known in Italy as the founder and
editor of Neural magazine.

“Google will eat itself” is simple to explain: it is a website that runs
ads via the Google “AdSense” program, i.e. embedded commercial
text advertising provided by Google, but bought from other compa-
nies. Google pays website owners a small fee for every click on an
ad link; “gwei.org” uses this money to buy Google shares. The idea is
that Google will pay the site to get bought up by it. Ideally, gwei.org
should make so much money from Google ad payments that it can
buy up all Google shares. To accelerate this process, “Google will eat
itself” imploys some hidden dirty programming hacks that trigger au-
tomatic clicks on the advertising so that any user who visits the site
will click multiple Google ads at once.

It is not only one company eating up another, but also a piece of soft-
ware eating up another software. Google is one of the first world
companies that is a piece of online software, with search requests as
its input, and a double output of search results and money to the
shareholders. This collapsing of software program and corporation
get turned against itself by gwei.org. It is the net.art of an Internet

http://www.gwei.org
http://www.gwei.org


englishENTERING THE MACHINE AND LEAVING IT AGAIN: POETICS OF SOFTWARE IN CONTEMPORARY ART12

that is no longer an open field of experimentation, but a corporate
space. The dark-humorous actionism of the piece manifests yet an-
other resolution of the conflict that had originally voiced by Moles
and Debord, technical formalism versus agency.

dot.walk, psychogeographic computing. Computation and situation-
ist urban drift ultimately converge in the “generative psychogeogra-
phy” of the Dutch artistic project http://www.socialfiction.org.
Its .walk is a “psychogeographic computer,” operated by pedestrians
who walk through street grids like electrons flow through the gates
of computer chips. The .walk computer can execute simple program
code like the following:

// Classic .walk
Repeat
{
1 st street left
2 nd street right
2 nd street left
}

Psychogeographic computing has a double effect: It demystifies com-
puting and turns it into a radically simple and popular low-tech and
low-cost operation. Secondly, it liberates the imagination of what a
computer can be and which purposes it may serve. Socialfiction.org
has expanded and systematized this idea into a broader concept of
“speculative programming” in which computing becomes a figure of
thought and reflection not only in theory, but also in artistic practice.

While the same could be said about Moles’ manifesto from 1962, the
implications are contrary. Where Moles models art, criticism and aes-
thetics after computing, superimposing the latter on the former, spec-
ulative programming does the opposite, modelling computation after
the arts and and speculative imagination.

http://www.socialfiction.org

	Abraham Moles and the Situationist International
	Synthetic Computer Art
	Proto- and Para-Computer Art
	Software as Metaphor of Dematerialization
	Software-aided art

	Analytic Computer Art
	Net.art
	Software art


